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A plasticity integration algorithm motivated by
analytical integration of a generalized quadratic function

The goal is to examine the dependence of the plastic flow direction as a function of
strain increment for a generalized quadratic flow potential; and from that, extract a scheme
for constructing a plastic flow direction for a more general class of yield and flow surfaces.

The associative generalized quadratic yield function is written as

φ = ψ =

√
3
2
σσσ′ : K : σσσ′ − σ̄ (1)

where σ̄ is the material flow strength, K the fourth order anisotropy tensor, and φ and ψ
are, respectively, the yield and plastic flow potentials. The plastic flow normal to the flow
surface is given by

dp = λ̇
∂ψ

∂σσσ
= λ̇

3
2
K : σσσ′

σ̄
(2)

and from plastic work equivalence

σσσ : dp = λ̇
3
2
σσσ′ : K : σσσ′

σ̄
= λ̇σ̄ = ˙̄εσ̄ (3)

leading to λ̇ = ˙̄ε.
The deviatoric part of the Jaumann stress rate is then given by

σ̂σσ′ = L : de = L : (d− dp)

= L : d− 3
2

˙̄ε
σ̄
L : K : σσσ′

(4)

All of the above follows standard procedures for determining rate equations for plasticity.
This works nicely for small strain increments. However, when the strain increments are
more than a few percent of the elastic strain, the plastic flow direction changes over the
time step, and this must be factored into the integration scheme.

For isotropic J2 plasticity, the radial return algorithm sets the plastic flow direction
aligned with the stress at the end of the time step. This provides an unconditionally stable
solution, but the scheme is only first order accurate in the plastic flow direction and any
effects of path change over the time increment are lost. A suitable generalization of the
radial return algorithm for anisotropic materials has not been found. Even for the simple
quadratic model shown above, a consistent implicit approach would involve inversions of
a fourth order tensor inside an iteration loop.

The approach taken here is to integrate the stress evolution equation analytically over
the time increment and characterize the direction of plastic flow as a function of the
applied strain increment. The applied strain rate, the equivalent plastic strain rate and
the flow strength are assumed to be constant over the time increment. This is consistent
with standard integration schemes over a time step. The integration is accomplished by a
forward integration scheme over a number of sub-increments, N , that approaches infinity.
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This laborious approach is to circumvent justifying how fourth order tensors are integrated
into exponentials. The stress at sub-increment M of the N is[

σσσ′
t+ M

N ∆t

]
=

[
σσσ′

t+ M−1
N ∆t

]
+ L : d

1
N

∆t− 3
2

˙̄ε
σ̄
L : K :

[
σσσ′

t+ M−1
N ∆t

] 1
N

∆t (5)

Applying this formula successively

σσσ′
t+∆t

N
=

{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}
: σσσ′t + L : d

∆t
N

σσσ′
t+ 2∆t

N
=

{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}2

: σσσ′t +
{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}
: L : d

∆t
N

+ L : d
∆t
N

σσσ′
t+ 3∆t

N
=

{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}3

: σσσ′t +
{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}2

: L : d
∆t
N

+
{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}
: L : d

∆t
N

+ L : d
∆t
N

. . .

. . .

. . .

σσσ′t+∆t =
{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}N

: σσσ′t +

[
N−1∑
S=0

{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}S
]

: L : d
∆t
N

(6)

Considerable simplification is possible. Writing the quantity in braces as{
I − 3

2
˙̄ε
σ̄

∆t
N
L : K

}
= A = I − 1

N
B (7)

to shorten the notation, expanding the binomial

AN = I − N

N
B +

N(N − 1)
N2 2!

B2 − N(N − 1)(N − 2)
N3 3!

B3 + . . . (8)

and letting N approach infinity gives

lim
N→∞

AN = lim
N→∞

{
I − 1

N
B

}N

= exp (−B) = exp
(
−3

2
˙̄ε∆t
σ̄
L : K

)
(9)

The simplified form for the summation is much the same as for scalars

1
N

N−1∑
S=0

AS =
1
N

(
I − AN

)
: (I − A)−1 =

(
I − AN

)
: B−1 (10)

This can be verified by multiplying the equation above by (I −A). It is also important to
note that the inverse can be applied to the left or right side of (I −AN ). Taking the limit
as N approaches infinity and using the result from Eq (9)
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lim
N→∞

1
N

N−1∑
S=0

AS =
2
3
σ̄

˙̄ε∆t

[
I − exp

(
−3

2
˙̄ε∆t
σ̄
L : K

)]
: (L : K)−1 (11)

The resulting equation for the stress at the end of the time increment is

σσσ′t+∆t = exp
(
−3

2
˙̄ε∆t
σ̄
L : K

)
: σσσ′t +

2
3
σ̄

˙̄ε∆t

[
I − exp

(
−3

2
˙̄ε∆t
σ̄
L : K

)]
: K−1 : d∆t (12)

The small and large strain increment limits are examined as a sanity check on the
relation. For the behavior at small strain increments the quadratic and higher terms from
the exponentials are neglected leaving

σσσ′t+∆t = σσσ′t −
3
2

˙̄ε∆t
σ̄
L : K : σσσ′t + L : d∆t (13)

which is the simple forward integration result from the rate equation, Eq (4). At strains
much larger than the elastic limit strain the exponentials approach zero leaving

σσσ′t+∆t =
2
3
σ̄
˙̄ε
K−1 : d (14)

Moving K and the numerical constants to the left side of the equation and multiplying
through by σσσ′t+∆t produces the square of the equivalent stress on the left side. Plastic
work equivalence then suggests that the plastic part of the rate of deformation tensor
approaches d at large strain increments, which must be the case since elastic strains are
limited by the material strength.

More can be done with Eq (12) to produce closed form expressions for the energy
dissipated and consistent tangent moduli for the generalized quadratic function. However,
the goal here is to look beyond the generalized quadratic relation and glean something
useful for integrating arbitrary flow relations. To this end, the direction of the normal to
the flow potential (plastic flow direction) at the end of the time step can be constructed
from Eq (12) after reordering the products in Eq (10)

αNt+∆t =
3
2
K : σσσ′t+∆t

σ̄
=

3
2
K : exp

(
−3

2
˙̄ε∆t
σ̄
L : K

)
:
σσσ′t
σ̄

+K : (L : K)−1 :
[
I − exp

(
−3

2
˙̄ε∆t
σ̄
L : K

)]
: L :

d∆t
˙̄ε∆t

(15)

If the exponentials are expanded in a Taylor series, it is readily seen that Ls and Ks can
be absorbed and kicked out of the individual terms of the expansion to arrive at

αNt+∆t =
3
2

exp
(
−3

2
˙̄ε∆t
σ̄
K : L

)
: K :

σσσ′t
σ̄

+
[
I − exp

(
−3

2
˙̄ε∆t
σ̄
K : L

)]
:
d∆t
˙̄ε∆t

(16)
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Equation (16) shows the evolution of the flow potential normal as a function of the
plastic strain increment. If the increment is very small, the normal is the same as at
the beginning of the time increment. At large plastic strain increments the flow potential
normal, and hence the plastic flow direction, is in direction of the applied strain increment.
For intermediate plastic strain increments the normal is some weighted average of the two
limits. This is not necessarily a simple weighting of the two limiting directions as the
fourth order tensors in the argument of the exponential will cause some deviation.

Proposed integration scheme
Using Eq (16) as motivation, it is proposed that the flow potential normal at the end

of a time increment be approximated as a simple weighting of the two limiting directions.

Nt+∆t = exp
(
−3µ ˙̄ε∆t

σ̄

)
Nt +

[
1− exp

(
−3µ ˙̄ε∆t

σ̄

)]√
2
3
d
˙̄ε

(17)

This expression has the appropriate limits of being the flow potential normal at time t for
small strain increments, and it is in the direction of the applied strain for strain increments
significantly larger than the limiting elastic strain. By comparison with Eq (16), the error
is in the path that the normal takes between these two limits. The deviation peaks when
the plastic strain increment is on the order of the elastic strain at yield.

It is important to note that Eq (17) is proposed to be the normal to the flow surface
at the end of the time increment. It is not an average plastic flow direction over the time
increment, and its intended use is different. The strategy adopted here is to find the stress
direction corresponding to this flow potential normal. The magnitude of the stress is then
adjusted to satisfy the yield function. This algorithm should result in fairly accurate stress
predictions at large strain increments where the error in the normal calculation is small.

There are several significant details that need to be addressed. One is determination
of the argument of the exponential in Eq (17) prior to knowing the plastic strain rate,
and another is in determining the magnitude of the plastic strain rate needed for rate
dependent material models and to advance the strain hardening. The solutions proposed
here are not unique, but they are conceptually straight forward.

The argument of the exponential function can be estimated using the overstress relation
from J2 plasticity

−3µ ˙̄ε∆t
σ̄

= 1− σT
e

σ̄
(18)

where σT
e is the effective trial stress computed from the yield function assuming there is

no plasticity over the time increment. Since the equation for the normal is approximate,
additional errors of a few percent in the argument of the exponential should not be of
significant additional consequence. Given the quantity of information available at this
state of the calculation, there are few viable alternatives.

Once the normal at the end of the time increment is determined, the direction of the
stress tensor at the end of the time step can be determined by inverting the flow potential
relation. The stress can then be placed in the form

σσσt+∆t = σ̄t+∆tβS (19)
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Here S is a second order unit tensor coaxial with the stress. It assumed that the yield
function is homogeneous of degree one in stress so that the magnitude of the stress can be
factored out as a scalar. Here σ̄ is the material strength as a function of strain rate and
temperature at the end of the time increment that appears in the yield function. β is a
factor that contains the orientation dependence of the yield function. If the yield function
is written as F(σσσ) = σ̄ then

βF(S) = 1 (20)

For the generalized quadratic function this can be done analytically. For other flow poten-
tials an iterative solution may be required.

Several options exist for determining an effective plastic strain rate, ˙̄ε, consistent with
the material hardening model and Eq (19). Perhaps the most physically appealing is
through use of an energy balance where the change in energy is due to a sum of elastic
and plastic parts. This insures that the effective plastic strain rate is work conjugate to
the effective stress. Taking a central difference

1
2

(σσσt + σσσt+∆t) : ∆εεε =
1
2

(σ̄t + σ̄t+∆t) ˙̄ε∆t+
1
2

(
σσσt+∆t : L−1 : σσσt+∆t − σσσt : L−1 : σσσt

)
(21)

Making the substitution from Eq (19) and rearranging, this becomes

σ̄2β2S : L−1 : S + σ̄ ˙̄ε∆t+ σ̄t ˙̄ε∆t− σ̄βS : ∆εεε− σσσt : ∆εεε− σσσt : L−1 : σσσt = 0 (22)

This equation can be solved iteratively with the material strength model connecting the
effective stress to the effective plastic strain rate. The difficulty with this approach is the
lack of a direct connection to the yield function, and integration errors lead to inconsis-
tencies in yield behavior. For near neutral loading, where the deformation is primarily
tangential to the yield surface, small negative plastic strain rates are sometimes computed.
The error can be traced to errors in the path dependence of the integral for the total energy
increment as this quantity is less than the change in elastic stored energy.

To avoid difficulties at very small plastic strain increments, treatment of yielding and
the plastic strain rate need to be consistent with the early assessment of whether or not
the material is plastically deforming. This early decision involves the trial stress, so basing
the plastic strain rate on the trial stress will avoid contradictory behavior. Following the
radial return concepts for J2-flow theory, the flow strength and strain rate at the end of
the time step can be determined from

σ̄( ˙̄ε, T, . . .) + 3µ ˙̄ε∆t− σT
e = 0 (23)

While there is no guarantee that the plastic strain rate computed in this manner is work
conjugate to the flow stress, it is likely close. This will be investigated in future work.

With the flow strength computed, the updated stress follows from Eq (19) and all in-
formation needed for an explicit calculation has been determined. For implicit calculations
additional computations are needed to compute the moduli. This is tedious, but straight
forward.
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Preliminary isotropic calculations
Preliminary calculations were run to assess the stability and accuracy of the integration.

The model implemented is the generalized quadratic yield function. The constants were
chosen to provide an isotropic response, and results are compared to those of J2-Flow
theory using the standard radial return algorithm. The calculations are run implicitly at
a constant time step, and the boundary conditions imposed produce a load path change
test.

A single element unit cube is subjected to uniaxial stress extension along the z-axis
at a constant strain rate of 0.02 for 5 seconds. At that time those boundary conditions
are removed and replace by simple shear deformation applied at all nodes shearing the
nodes on the y face in the positive x direction. The total simulation is for 15 seconds with
constant time increments of 0.01, 1.0 and 5.0. Figure 1 shows stress time histories from the
proposed algorithm compared to results using radial return at the 0.01 time step. They
are coincident.

Figure 2 compares stress histories from the two methods at the significantly larger time
increments of 1.0 and 5.0 with the baseline curve at the 0.01 time step. The points from
the proposed algorithm fall nearly on the baseline curve while the results from the radial
return method have increasing deviation with increased time steps.

Preliminary anisotropic analyses
A simple uniaxial tension calculation was run as a preliminary assessment of behavior

for anisotropic materials. The constants were chosen such that the contraction in one
lateral direction should be twice that in the orthogonal direction. The numerical solution
captures this trend nicely.

While this is encouraging, further observation from numerical results and analysis of Eq
(17) reveals an unacceptable deficiency. While the proposed normal direction produces the
correct stress direction in the limit as the strain increment approaches zero, the change in
stress direction with increasing strain is not correct. At small non-zero strains the plastic
flow direction is not correct. Such errors at small strain increments are unacceptable as
the results must approach the rate form of the equation as the time step goes to zero.
Equation (17) will not result in proper time step convergence.

Discussion
Improved accuracy is expected from the new integration scheme for J2-Flow theory

since the integration over the time increment is exact for this model. The standard radial
return is a backward difference algorithm and only first order accurate. Although the
closed form integration algorithm will provide more accurate response than radial return,
it is unlikely to replace the familiar and efficient technique.

The stress solution in Eq (12) is the exact solution for the generalized quadratic yield
function for a rate independent material with no strain hardening. Although it would be
possible to implement this form, exponentiation of the fourth order tensor could be com-
putationally expensive. The most efficient algorithm might be to perform the calculations
in a reference frame corotational with the material. In this way the eigenvalue decompo-
sition only needs to be done once and the exponentiation can be handled in the principle
coordinates.

It may be possible to construct acceptable forms for the normal direction of more
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complex potentials in the spirit of Eq (16). However, for a more general model the fourth
order K tensor would likely be replaced by a tensor function of stress. Such a form could not
be decomposed into fixed principle coordinates, and the numerical implementation would
be very costly. For this reason, an alternative generalization of Eq (16) is not pursued at
this time.

While the integration scheme based on Eq (17) has been determined to be unsuitable
for anisotrpoic material models because of issues at small strain increments, it will still
provide a good estimate for the stress at very large strain increments. It can, therefore,
be used in backward difference integration schemes to estimate the stress to begin the
iteration. Finding a good initial guess for the stress is often the most difficult task for
these implicit solutions, so estimating the stress direction through Eq (17) and the plastic
flow potential could prove quite useful.

Acknowledgement
This work was performed under the auspices of the U.S. Department of Energy by

University of California, Lawrence Livermore National Laboratory under Contract W-
7405-Eng-48. UCRL-TR-219523

7



-400

-200

0

200

400

600

0 5 10

Time (s)

St
re

ss
 (M

Pa
) New

Radial
Return

σxy

σ'xx

σ'zz

 
 
Figure 1.  Comparison of stress response during load path change test for the new integration 
scheme and radial return with a time step of 0.01. 
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Figure 2. Comparison of stress response during load path change test for the new integration 
scheme and radial return for time steps of 1.0 and 5.0. The gray baseline curve is the same as in 
Figure 1. 




